An Update on the Potential Habitability of TRAPPIST-1. No Aliens yet, but We’ve Learned a lot.

An Update on the Potential Habitability of TRAPPIST-1.  No Aliens yet, but We’ve Learned a lot.
read more

One year ago, I wrote an article about the remarkable discovery of the TRAPPIST-1 planetary system, a system of seven temperate terrestrial planets orbiting an ultra-cool red dwarf star. This was an enormous astronomical discovery because these low-mass stars are the most numerous ones in our galaxy, and the discovery of potentially habitable planets around one of them led many people to speculate about the existence of life there and elsewhere in our galaxy around similar stars.

This announcement also inspired a lot of additional studies by astronomers worldwide, who have used additional instruments and run complex models to better understand this planetary system and its potential for hosting life.

One year later, it seems to me that the time is right to give you an update on what we’ve learned about this planetary system, which is located only 41 light-years from Earth.

AGU 2015 session: Direct Imaging of Habitable Exoplanets: Progress and Future

Artist concept of the planetary system Kepler 62. Image credit: Danielle Futselaar - SETI Institute
Artist concept of the planetary system Kepler 62. Image credit: Danielle Futselaar – SETI Institute

Join us tomorrow at the AGU Fall Meeting for a session on direct imaging of habitable exoplanets that I organized with my colleagues Ramses Ramirez from Cornell University and David Black.

This session consists in a discussion on the potential of new and future facilities and modeling efforts designed to detect, image and characterize habitable exoplanets, studying their formation, evolution and also the existence of possible biospheres. Topics to be covered in this session include signs of exoplanet habitability and global biosignatures that can be sought with upcoming instrumentation; instrument requirements and technologies to detect these markers; strategies for target selection and prioritization; and impacts of planetary system properties, ground-based and space telescope architectures, and impacts of instrument capabilities on the yield of potentially inhabited exoplanets.

The Next Step in Exoplanetary Science: Imaging New Worlds

In 2003, I was lucky enough to be part of a small group of astronomers that met at the University of California at Berkeley to brainstorm on an innovative idea: the design of an instrument to image and characterize planets around other stars, called exoplanets, using a telescope in the 8 – 10 meter class. A decade later, such an instrument became reality with the arrival of the Gemini Planet Imager (called also GPI, or “Gee-pie”) instrument at the Gemini South telescope in Chile.

Five known planetary systems imaged with current adaptive optics systems. Fomalhaut shown on the top-right is the only system detected with the Hubble Space Telescope. HR8799 discovery was announced in a Science article in 2008 by a team led by C. Marois including members of the GPI team (credit: C. Marois).
Five known planetary systems imaged with current adaptive optics systems. Fomalhaut shown on the top-right is the only system detected with the Hubble Space Telescope. HR8799 discovery was announced in a Science article in 2008 by a team led by C. Marois including members of the GPI team (credit: C. Marois).

Fate of Planetary Habitability highlighted at the AGU Fall Meeting

Together with Cynthia Phillips, one of my SETI Institute colleagues, I will convene a session at the AGU Fall meeting tomorrow afternoon (oral) and Friday December 13 (poster) entitled “Rapid Environmental Change and the Fate of Planetary Habitability“.

This session will be an opportunity to see recent works on the adaptability of life in abrupt climate crises. Recent discoveries inspire us to re-examine our understanding of how rapidly planetary habitats can be redistributed. Past habitable environments on Mars from the Curiosity rover, possible subsurface lakes on Europa, and potentially habitable exoplanets from the Kepler spacecraft continue to expand our definition of the habitable zone.

slide_frontThe submitted abstracts intertwined aspects of changing habitability, including the complex interactions among astronomical, geological, and climatic forces, on the Earth and beyond.

New ET Detection Method Calls for World’s Largest Telescope

THE FOLLOWING ITEM WAS ISSUED BY ASTRONOMY MAGAZINE IN WAUKESHA, WISCONSIN, AND IS POSTED ON MY BLOG FOR YOUR INFORMATION.

29 May 2013

 This release is based on a story in the June 2013 issue of Astronomy magazine: http://www.astronomy.com/~/media/Files/PDF/Magazine%20articles/ET-with-infrared-light.pdf

Until recently, one of the ultimate mysteries of the universe — how many civilizations may exist on planets orbiting other stars in the Milky Way Galaxy — relied on the possibility of detecting intelligent beings by radio signals. Now a team of astronomers, engineers, and physicists from the University of Hawaii, the University of Freiburg, and elsewhere has proposed a new and powerful technique to search for intelligent life.

Artistic rendering of the Colossus telescope, a 77m wide telescope capable of detecting the near-infrared light resulting from a technologically advanced civilization living on an exoplanet located at 60 light-years. (c) http://www.innovativeoptics.ca/
Artistic rendering of the Colossus telescope, a 77m wide telescope capable of detecting the near-infrared light resulting from a technologically advanced civilization living on an exoplanet located at 60 light-years. (c) http://www.innovativeoptics.ca/

Progress on the GPI exoplanet imager integration

The Gemini Planet Imager (GPI) is a next generation adaptive optics instrument being built for the Gemini Observatory. This is an ambitious project with the goal of directly imaging extrasolar planets orbiting nearby stars. The instrument is currently being integrated at the University of California at Santa Cruz. After more than a year of testing in a fixed orientation in a clean room, on March 7, 2013, the 2,030 kg instrument was set up on a crane and flexure rig. In collaboration with the UCSC team, we prepared this time lapse video showing GPI being set up in its new position.

GPI instrument being set up on its flexure jig mounting (Credit: GPI consortium)

Kepler is Sick and Resting: “Mountain View, we have a problem”

“Mountain View, we have a problem…”
NASA Kepler Manager at NASA Ames, Mountain View announced today that they interrupted the science operation of the spacecraft, due an issue with one of the reaction wheels.  Kepler is equipped with four reaction wheels which are used to accurately point the telescope. One failed in July 2012 and today the team announced that they detected issues with a second one. Kepler needs three reaction wheels to be used properly, if this one fails the mission is most likely over. That’s not good news.

A Snapshot of Exoplanet Study

The study of exoplanets is without any doubt the most active and disrupting field in today astronomy. I had often blogged about it since it is my little obsession. Unfortunately, I have a hard time to keep up with the amount of discoveries and announcements being made every week over the past 3 years. This post is a snapshot of the recent study of exoplanets: what we know, what have been recently discovered and what is coming soon.

Kepler-16: Exoplanets around binary star systems DO exist

Kepler-16 is another great discovery coming from the Kepler telescope, the 10th NASA Discovery mission which is devoted to finding Earth-size exoplanets by monitoring variations of brightness due to transit. Today the Kepler team found a circumbinary exoplanet, an exoplanet orbiting a binary star system. Did they find Tatooine?

Artistic view of the Kepler-16(AB)b exoplanet (a Saturn-like exoplanet) in orbit around its 2 stars shown in the background.
Artistic view of the Kepler-16(AB)b exoplanet (a Saturn-like exoplanet) in orbit around its 2 stars shown in the background.