Latest Posts

The real tetrahedrons of Mars

A Piece of Mars: The real tetrahedrons of Mars are dunes, built by winds blowing sand from more than one direction. This 0.5×0.5 km (0.31×0.31 mi) area shows a dune formed from two winds that are about 90 degrees apart: one blowing from the bottom and one blowing from the right. This makes the dune have two slip faces, which is a rare occurrence on Earth dunes. (Earth dunes are complicated by superposed secondary dunes that interfere with and obscure this pattern. Or if they’re small enough to not have those secondary dunes, then they are changing fast enough that one slip face will quickly erase the other. I’ve only ever seen two slip faces at once for very short periods in Earth dunes – they don’t last.) Here, the two winds have worked together to form a little spit of sand off to the upper left. The result is a 3-sided “pyramid”, with no advanced civilization required for its construction. (HiRISE ESP_050479_1360, NASA/JPL/Univ. of Arizona).

The thinnest landslides

A Piece of Mars: In the dustiest regions of Mars, steep slopes occasionally produce very thin avalanches of dust, revealing a darker surface under the top layer of dust. This shows one that is 610 m (0.38 mi) long, running from its tiny point of initiation near the top of the slope down to the bottom of the slope where accumulated landslides have slowly buried old windblown dunes (or TARs). These landslides occur every spring, and may be triggered by sublimation of small accumulations of winter ice, or perhaps by the wind. This one formed some time between May 7, 2012 and May 22, 2013, as it appeared between two successive images of this spot. It’s still there today, most recently imaged on May 5, 2017, slowly accumulating dust until it fades into the background with the rest of the slope. (HiRISE ESP_035307_2115, NASA/JPL/Univ. of Arizona)

Dunes fighting for survival

A Piece of Mars: Having a bad day? You’re in good company with these dunes in this 0.96×0.48 km (0.6×0.3 mi) scene. The gray barchanoid dunes are covered in ripples, as the wind valiantly tries to push the sand to the dune crests. But they are besieged by other processes at work. Dark scribbles show how dust devils have swept by, removing dust and probably scattering a little bit of the sand. The steep slip faces are not covered in dry avalanches typical of active dunes, but rather they appear eroded, as if some force locked the dune in place and started eroding the surface wherever ripples couldn’t rescue it. Splotches on the tan ground between the dunes, and narrow furrows attest to seasonal ice reworking the surface. And in this great battle, what I wonder is: can those dunes have formed like this amidst such turmoil, or are they relics of an older, windier, perhaps less icy age? (HiRISE ESP_050488_1150, NASA/JPL/Univ. of Arizona)

Weird and wild southern polar dunes

A Piece of Mars: This 0.96×0.48 km (0.6×0.3 mi) scene shows a bit of a south polar dune field. The more recently-active dark sand is rippled, but there are bright splotches where something else has happened. Presumably it’s ground ice that sublimated away explosively, as happens at many high latitude locations on Mars, only here the dunes are stabilized enough that those spots aren’t eroded away by wind activity every summer. Because the dunes aren’t active, their crests have diminished to subtle bumps on the landscape (would you even know they were dunes if I hadn’t told you? Look at the whole HiRISE image to be sure!) (HiRISE ESP_013224_1080, NASA/JPL/Univ. of Arizona)

Is it an old fossil barchan dune?

A Piece of Mars: There are many barchans on Mars, those lovely isolated crescent-shaped dunes. In a few places there are what looks like ancient preserved barchans, now lithified. The mound in the center of this 0.96×0.54 km (0.6×0.33 mi) scene shows what may be an example of a fossil barchan. If so, then this is quite unusual. On Earth, dunes are very rarely preserved in their full form, usually having been at least partially eroded away before being preserved. I love how much geology is visible from orbit on Mars! (HiRISE ESP_049955_1665, NASA/JPL/Univ. of Arizona)

Sand tails

A Piece of Mars: Up on the tallest volcanoes, the wind screams downhill at night. This 500x500m (0.31×0.31 mi) scene shows how dust is carried downhill, but only that which is trapped behind boulders and crater rims sticks around. The big hole may be a window into a lava tube. Formation of the window itself is one of the younger events to have formed this landscape, as the screaming dust hasn’t fully filled in the hole (although it has begun the process and formed a tailing wind streak). (HiRISE ESP_050089_1660, NASA/JPL/Univ. of Arizona)

SETI Alumni: Portrait of Sarah Blunt

SETI Institute GPI group from left to right: Eric Nielsen, Franck Marchis, Jasmine Garani, Sarah Blunt, and Clement Chalumeau

SETI Institute GPI group from left to right: Eric Nielsen, Franck Marchis, Jasmine Garani, Sarah Blunt, and Clement Chalumeau (credit: F. Marchis/SETI Institute)

Sarah Blunt, REU student class of 2015, is today a full member of the Gemini Planet Imager Exoplanet Survey. Together with SETI researcher Eric Nielsen and Franck Marchis, she has developed an innovative method to fit the orbits of directly imaged exoplanets. She has published her work in Astronomical Journal and is a recipient of an NSF Graduate Research Fellowship that will fund her graduate school. Here her story. (more…)

Curiosity, recovering from the Bagnold dunes campaign

A Piece of Mars: You’ll probably want to click on this image to see the whole thing, it’s pretty big, and it’s worth seeing. This 850×550 m (0.53×0.34 mi) scene shows the barchanoid dunes of the Bagnold dune field, imperceptibly crawling southwestward (to the lower left). This is the site where the Curiosity rover first encountered an active dune in its trek through Gale crater. This image was taken after the rover’s intensive field campaign of the two dunes in the upper middle of the frame – the rover is in fact in this frame (extra credit if you can find it!), but it’s backed off a bit from the dunes, and it’s sitting on some old sandstone (that we now know was also once a dune field, long ago, much like some of the sandstones we find on Earth). This image was taken in March 2016; the rover has since moved on and across the dune field, and is slowly working its way through the foothills of Mount Sharp.

I chose this image in tribute to a colleague who unexpectedly passed away last week. He worked on both the HiRISE and Curiosity teams, so it’s fitting to show both here, near the dunes that he studied. He’s best known for his work on dune migration and surface erosion on Mars. He also mapped and measured wind-carved stones called ventifacts (we have those on Earth too), and discovered that the ventifacts here in Gale crater were carved (probably long ago) by a wind blowing from the southwest, which is opposite the direction that the dunes are being blown today! There must have been quite a remarkable shift in wind patterns since those stones were carved, and it remains a mystery. Our dear colleague will be greatly missed.

(HiRISE ESP_045293_1755, NASA/JPL/Univ. of Arizona)

The bowl of windstuff

A Piece of Mars: Get out your red and cyan glasses to see an old crater, which fills this 0.775×0.7 km (0.48×0.43 mi) scene. The crater punched through many thin layers when it formed, some of which you can still see in around the rim. The crater is filled with many small dunes called transverse aeolian ridges (TARs), given this laborious and generic name because they aren’t quite like dunes we find on Earth and we don’t yet understand what they are. The TARs are common in this area, but there are even more here, where sand is swept into and then trapped inside this deep bowl. (HiRISE PSP_008735_1700_PSP_007878_1700, NASA/JPL/Univ. of Arizona)

A change of fluids

A Piece of Mars: Water carved this ~800 m (0.5 mi) wide channel billions of years ago. The water dried up, and since then it’s been sand that flows through here (from the right), building up lovely dunes. A single crater on one of the dunes indicates that they’re not very active (dunes of this type on Mars all seem to be inactive, unlike their bigger, darker cousins). Look closely between the dunes and you might see a few little dots – these are boulders that have fallen, weathered out from the channel walls. (HiRISE ESP_022693_1530, NASA/JPL/Univ. of Arizona)