Latest Posts

1,500th telescope on our Kickstarter. Thank you!

We have just passed the pledge of our 1,500th telescope on our Kickstarter campaign. With such an amazing number of eVscopes soon to be in operation around the planet, our Campaign Mode and Citizen Science applications will be extraordinary exciting and revolutionary! Your support has brought us to this truly amazing moment, and all we can say is thank you.

After so many questions about planets and requests for additional photos, we felt the need to conduct new observations—and despite bad weather in parts of the Northern Hemisphere, we managed to do it! As you check out these pictures, please keep in mind that what you see through the eVscope’s eyepiece is far more beautiful and mind blowing. The image quality and observing experience there are definitely superior to what you see in these photos.

The eVscope provides truly amazing astronomical views when pointed at nebulae and galaxies. As you can imagine, the Unistellar team has seen lots of targets over the past three months, but we were delighted to see new ones with our eVscope because they are so beautiful and awe-inspiring.

Spiral Galaxy NGC891, for example, is an unforgettable sight in the eyepiece of an eVscope. It’s similar to our Milky Way, but because we see it edge-on, the structures made by the dust and gas are particularly striking.

Picture of the galaxy NGC891 taken with the eVscope from Pourrieres, France. (magnification x100)

Picture of the galaxy NGC891 taken with the eVscope from Pourrieres, France. (magnification x100)


Is it windblown or not (#2)?

A Piece of Mars: This 0.93×1.25 km (0.57×0.78 mi) scene shows what I’m starting to think are windblown features. I posted something similar to this once before, from a location not that far from here. In this one region of Mars there are parallel lines cut into the tops of hills. A geologist would first presume they were exposed, tilted layers. But the regularity of their spacing (especially when you zoom in) is a bit unusual, and suggests some sort of self-organization (like windblown ripples). And then the questions begin: why just in this spot on Mars? what’s unusual about the rocks (or the wind) here? I still have no good answers. (HiRISE ESP_052386_1565 NASA/JPL/Univ. of Arizona)


A Piece of Mars: There’s a fabric of erosion in this 1×1 km (0.62×0.62 mi) scene, with the main wind blowing from lower right to upper left (and if you look carefully you’ll see there’s a second, subtler fabric a bit clockwise from that one). The result is a landscape strewn with streamlined rock called yardangs. The darkest areas are shadows from rock faces scoured by the wind so deeply that they’ve been undermined until there’s overhang. Normally this would lead to collapse features, like rock piles, but you don’t see those here. That’s an indication that the rock here is easily eroded and fine-grained, so that as it’s eroded, it’s simply carried off by the wind. (HiRISE ESP_052384_1800, NASA/JPL/Univ. of Arizona)

Unistellar Signs Up More Than 1,200 Early-adopters for its Revolutionary eVscope Confirming the Public Interest for Citizen Science Astronomy

Unistellar Signs Up More Than 1,200 Early-adopters for its Revolutionary eVscope Confirming the Public Interest for Citizen Science Astronomy

San Francisco & Marseille, November 9, 2017. Unistellar, a startup that’s committed to restore the joy of night-sky viewing to people all over the globe, is off to a strong start thanks to the massive success of its recent Kickstarter campaign.

The campaign gave supporters the opportunity to order an eVscope, a revolutionary, electronics-based telescope that offers unprecedented views of distant objects in the night sky. The device also allows users to make significant contributions to science by joining observing efforts led by prominent astronomers.

M82r logo (more…)

Island in the stream

A Piece of Mars: In the floor of what might have been an old fluvial channel there are a bunch of really neat dunes (or maybe ripples, they’re TARs and we don’t know yet what they are). One spire pokes up here, ~200 m (656 ft) across and ~90 m (295 ft) tall. The TARs reveal the wind direction here, as wind flowed from top to bottom around the spire, converging on the lee side. (HiRISE ESP_026557_1525, NASA/JPL/Univ. of Arizona)

A few more pictures of astronomical targets seen with the eVscope

We got a lot of requests for additional pictures of astronomical targets taken with the eVscope. Here some of them taken recently. One nebula, one galaxy, one planet in our solar system and our moon…. Enjoy!

The Omega Nebula (catalogued as Messier 17 or M17) is an H II region in the constellation Sagittarius.

The Omega Nebula (catalogued as Messier 17 or M17) is an H II region in the constellation Sagittarius. Magnification x50


M82r logo

Cigar Galaxy (or M82) is a starburst galaxy about 12 million light-years away in the constellation Ursa Major . Magnification x100.


Black and tan

A Piece of Mars: Dunes in the top row in this 0.73×0.47 km (0.46×0.29 mi) scene are dark but those in the lower row are brighter. Why? They’re all probably made out of the same kind of sand, which is dark. And they all probably got covered by fine-grained airfall dust, which is bright. At some point after that, a wind blew, probably from top to bottom of the view, and moved enough sand to kick off the fine bright dust. But the relief from those top dunes took energy from the wind, so that by the time it reached the lower row, it wasn’t strong enough to move sand anymore. So until the next windstorm, we see two different colors of dunes. (HiRISE ESP_052399_1885, NASA/JPL/Univ. of Arizona)

Seeing the long-period Comet C/2017 O1 with the new eVscope

You’ve probably heard of C/2017 O1, a long-period comet that’s now paying what may well be its first-ever visit to the inner solar system. Earlier this month we decided to check it out using our eVscope prototype.


Comet C/2017 O1 observed in the eyepiece of the eVscope


Mars’ corduory

A Piece of Mars: The wind on Mars likes to make textiles (unfortunately the term geotextiles is already taken for other purposes). This 1×0.6 km (0.62×0.37 mi) scene shows two different sets of ripples. The larger set has straight to wavy crests, and they’re ~18 m (~59 ft) apart, which is pretty big for ripples (really they’re TARs). Inbetween those (click on the picture so you can see them) are small ~2 m (~6.5 ft) ripples that make Mars look like it’s made of kahki corduroy (which is a thing but it’s not on trend, so Mars could stand to catch up a little). What does this all add up to? There are at least two different sets of wind directions, and each probably formed on its own timescale. If we learn how to decipher these, then we could better understand weather patterns on Mars, because ripples like these are pretty common there. (HiRISE ESP_051244_1315, NASA/JPL/Univ. of Arizona)

It’s Official! The eVscope from Unistellar Gets Kickstarted

Marseille, France & San Francisco, CA – October 25, 2017 –

Imagine being able to see galaxies, nebulae, and asteroids and discovering the sky from your own backyard while participating in scientific investigations. Unistellar has launched a Kickstarter campaign for its eVscope, a powerful telescope that will give the sky back to all of us.

The Unistellar eVscope was first presented at the CES in 2017 and recently won the Innovation Award in the Tech For a Better World product category for the CES 2018.