THE COSMIC DIARY NETWORK

Flow. Lots of flow.
Published 4/16/2018 in Lori Fenton's Blog Author lfenton
Over the years, many things have flowed across the surface of Mars: lava, ice, water, and wind. Two things have flowed in this image (the view is 0.75x0.6 km or 0.47x0.37 mi): Image credit: HiRISE ESP_026541_1840, NASA/JPL/Univ. of Arizona If you know my blog at all, then you might recognize the big structures as yardangs. They are part of an enormous set of yardangs on Mars called the Medusa Fossae Formation. At some point in the past, probably a few billion years ago, the wind kicked up a bunch of sand that carved out these structures, blowing from the lower left to the upper right. That's cool. But the thing to notice is the stuff around the yardangs. As the wind carved them out, it also created ripples. It's fairly normal to find ripples, especially coarse-grained ripples, in the troughs between yardangs, because a wind strong enough to carve out bedrock is also strong... read more ❯

My 2018 paper on recent climate change in Meridiani Planum, Mars (Part 3)
Published 4/13/2018 in Lori Fenton's Blog Author lfenton
This is the 3rd (and final) entry in a blog series describing a paper I recently published with colleagues in JGR Planets. Here are links to the previous two entries: Part 1, Part 2. Wow, I didn't think this would take 3 entries. Science is weird. You start a project feeling out of your depth, not knowing exactly where it will take you. You stumble around, read a bunch of papers to absorb the wisdom of others, and work up the courage to do things. You struggle mightily in doing those things: making the model run, keeping access to the computer system, making sure the model output is what you think it is, figuring out what you need to calculate and the best way of doing so. And then a bunch of refining and reworking and throwing out old ideas and trying new things, sometimes based on precious conversations with colleagues... read more ❯

My 2018 Paper on Recent Climate Change in Meridiani Planum, Mars (Part 2)
Published 4/12/2018 in Lori Fenton's Blog Author lfenton
In a previous post, I set the stage for my recently published paper in JGR Planets. A recap: we've got good evidence for a change in Mars's climate. Widespread ripples in Meridiani Planum formed >200,000 years ago, last migrated westward more than ~50,000 years ago, had their crests reformed into little dunes by a slightly different wind sometime after that, but have been dormant ever since. Meanwhile, we know that over that same time period, Mars' orbit and axial tilt have varied, which can affect wind patterns. Moreover, over this period, those same planetary changes led to a stepwise sequestration of atmospheric CO2 into the south polar ice cap, so that we know the air pressure was once higher than it is today. This too can affect wind patterns. All of these parameters can be plugged into a Mars global climate model (MGCM) to see if the model thinks the wind directions... read more ❯

My 2018 paper on recent climate change in Meridiani Planum, Mars (Part 1)
Published 4/11/2018 in Lori Fenton's Blog Author lfenton
Today a big thing happened: a paper I've spent a year or so working on has finally been published in the Journal of Geophysical Research: Planets (which we just call "JGR Planets"). Scientists write a lot of papers, so it's not as momentous as, say, graduating (or watching a student graduate), but it's still a really nice feeling. I can now download a PDF of the paper, look at all the pretty formatting, lovely figures and tables, pages of analysis and what I hope will turn out to be insightful discussion, and say "Yeah, I did that, and with some great colleagues. It's awesome". I'm going to try to explain what we did. If you can access the paper itself, you'll see that JGR now includes a "Plain Language Summary", the journal's attempt to reach a wider audience. It's not a bad idea in this era of ever-deepening specialization, so that... read more ❯

Wind-exposed layers
Published 3/26/2018 in Lori Fenton's Blog Author lfenton
On Earth, layers comprising the geological record of an area are most often exposed by fluvial erosion, as a river cuts through rock (a typical example is the Grand Canyon). On Mars, fluvial channels are not so common (especially in the past few billion years). But the wind has relentlessly worked away at the surface, sometimes revealing strata laid down long ago. Click on the image for more detail. This is a tiny bit (0.5x0.375 km, or 0.31x0.23 mi) of the side of an "Interior Layered Deposit" in the middle of Candor Chasma, called Juventae Mensa. Wind blowing from the upper left and upper right has eroded the whole area, eroding and exposing a bunch of layers. For some reason a bit of those layers is a little more resistant to erosion, where the wind has left behind a tiered hill (technically it's a sort of yardang). Each step on the... read more ❯

Dune trails deep in Hebes Chasma, Mars
Published 3/19/2018 in Lori Fenton's Blog Author lfenton
A few weeks ago I wrote about dunes leaving behind trails near the north pole of Mars. They do this in a few other places as well, but it's not very common. Below is a rare example, this time on the floor of Hebes Chasma (one of the Valles Marineris), which is a tectonically-opened hole in the ground that's about 6 km deep. I don't mean to repeat the same topic, but geologists are usually drawn to terrain that so plainly lays out the geological story of an area, and obvious dune-generated layers are pretty rare. (Also pretty.) (HiRISE ESP_045586_1585, NASA/JPL/Univ. of Arizona) What's going on? A wind has blown sand from the left to right in this image, forming crescent-shaped "dome" dunes. As they migrate to the right, they've left behind their lowest bits (like a snail's slime trail). That trail is also being eroded away, slowly, which is why it... read more ❯

Athena Coustenis, Professional Status
Published 3/16/2018 in Athena Coustenis Author Athena Coustenis
www.coustenisplanetologist.com/#FullCV read more ❯

Wind on Mars and the Huygens-Fresnel Principle
Published 3/12/2018 in Lori Fenton's Blog Author lfenton
How about some basic physics? It'll be easy, I promise. Just look at the pretty picture below (click on it to see it better): (HiRISE ESP_045586_1585, NASA/JPL/Univ. of Arizona) The big crater is ~400 m (1/4 mile) across. Wind blows sediment from the top to the bottom of the view, making some dune-like features (TARs, really) at the top and inside the crater. The rim at the top of the crater has a set of hills with a dip inbetween them, which allows wind and sediment to be funneled into the crater through a narrow valley. Once inside the crater, the wind expands laterally, so that some of the dune-like features form arcs, like ripples that form after you throw a rock into a pond. This is a demonstration of the Huygens-Fesnel principle: that waves do their best to travel spherically outward in all directions. Most of the time, different parts of the... read more ❯

AI as a Tool for Planetary Defense: How a Computer Could Help Us Make the Right Decisions When Facing An Asteroid Threat
Published 3/8/2018 in Franck Marchis Blog Author Franck Marchis
Last May, a diverse group of astronomers, space agency executives, government representatives, and theorists who study tsunamis and asteroid impacts met for a week in Tokyo to discuss the state of planetary defense.  This group also included a few members of the NASA’s Frontier Development Lab (FDL), an applied research accelerator, aims to foster collaboration between AI experts  and planetary researchers expressly for the purpose of finding solutions to NASA global challenges, including Planetary Defense. The conference took place at Japan’s Miraikan (literally, “Future Museum”), which seemed highly appropriate given that our topic was the threat posed by asteroids and comets, and the actions we might take to address it. After listening to talks by several experts, attendees began a role-playing game which simulated the threat of a ~200m asteroid that might—or might not—strike Earth in ten years. Over the course of a week, we took on the role of government... read more ❯

"Baby" dunes on Mars are big
Published 3/5/2018 in Lori Fenton's Blog Author lfenton
Baby dunes on Mars are pretty big compared to those on Earth. In this 885x512 m (0.55x0.32 mi) frame, there are four dunes of roughly the same size, all of which are about as small as dunes can get on Mars. They're ~180 m (590 ft) across, several times bigger than similar "elementary" dunes on Earth. There's another key difference between Earth and Mars dunes. The avalanching lee slope (the slip face) comes to a point in these dunes. That's because there are two winds forming these dunes, one from the upper right and one from the upper left. On Earth, as winds alternate, they erode the older slip face and create a new one directly downwind, so you wouldn't typically see two crisp slip faces meeting at a point, like they do here. There's something about sand or the movement of sand on Mars that makes slip face creation faster... read more ❯

Dune trails
Published 3/1/2018 in Lori Fenton's Blog Author lfenton
There's so much going on in this 0.75x0.75 km (0.47x0.47 mi) image. You're looking at a broad dune migrating toward the upper right. It's early summer, but this is close enough to the north pole that some winter ice lingers (pale blueish white), amid slumps that have shed down from the dune. The slumps probably form as ice weighs down the dune sand -- they are not seen on dunes at lower latitudes, where ice is less common. The upwind side of the dune is interesting as well. The dark dune slowly migrates forward, leaving behind bits of itself (sort of like how a snail leave a trail of slime). Those left-behind bits have somehow formed into a bright surface -- I'm not sure why it's bright, but it is being slowly being broken into a polygonal shapes and eroded by wind scour, both of which are processes that are common... read more ❯

Ius Chasma dunes: they move
Published 2/20/2018 in Lori Fenton's Blog Author lfenton
Many dunes on Mars are actively migrating, like these dunes (view is 0.4x0.5 km, 0.25x0.31 mi). These are found deep in Ius Chasma, one of the Valles Marineris. These dunes slowly migrate toward the right, pushed by winds blowing from the lower and upper left.       Comparing this recent image with the first HiRISE image taken ~10.5 years ago (that's ~4.4 Mars years) shows development of a crest linking these two dunes, indicating the wind from the upper left has been most active over the last few years. Click on the grayscale image to the left to see an animation of this change. If you want to learn more about Valles Marineris dunes, you can read about them in this paper by Chojnacki et al. (2014). (HiRISE ESP_053595_1725, NASA/JPL/Univ. of Arizona) read more ❯

Where dune fields begin
Published 2/12/2018 in Lori Fenton's Blog Author lfenton
This is the upwind edge of a dune field (825x625 m, 0.51x0.39 mi). Winds blow down a cliff (offscreen) from the lower right, blowing sand toward the upper left. Elongated dunes have formed parallel to the resultant wind direction, only avalanching into slip faces once enough sand has piled up (there are two slip faces at the upper left). The tan/black mottling shows where tan dust has settled or been removed from the dark sand by recent winds. Large grains are heavier and harder for the wind to move, so they form into ripples (with a 10 m or 33 ft spacing) that trail behind the dunes - ripples like these are common on the upwind edge of dune fields on both Earth and Mars. (HiRISE ESP_053594_2610 NASA/JPL/Univ. of Arizona) read more ❯

Mars' "Type A" wind
Published 2/5/2018 in Lori Fenton's Blog Author lfenton
The busy, busy wind has moved a lot of things to make this 0.6x0.85 km (0.37x0.53 mi) landscape. First it built a big dark dune, covering it and the surrounding surface with ripples. Then it dumped a bunch of bright yellow dust all over everything, maybe the result of a nearby dust storm, or maybe just gradual fallout in a quiet season. And then it made some whirlwinds into dust devils that scribbled away some of the dust, revealing the dark dune surface. (I'll also note that when turned upside down, this looks like an interesting one-shoulder dress with a unique abstract pattern. Someone should go make this.) (HiRISE ESP_053195_2305 NASA/JPL/Univ. of Ariz) read more ❯

The superbloodmoon and nachas
Published 1/31/2018 in Lori Fenton's Blog Author lfenton
I set my alarm for 5:30 this morning. Sometimes I skip lunar eclipses, but I do try to see them if they're total, and if I think the sky might be cloud-free (which it often isn't in the Bay Area of CA, as low-lying marine clouds typically roll in overnight). My 8 year old is into astronomy and heard about the eclipse from one of his favorite Youtube science channels for kids (can't remember the name of it or I'd share - I'll ask him and update later on). Last night he asked me to wake him up, and I agreed, although last time I tried to do something like this he just grunted and went back to sleep. So at 5:30 my alarm went off (and so did my husband's - great minds think alike, although he went back to sleep once he realized I would deal with the... read more ❯

Smash! Whoosh...
Published 1/30/2018 in Lori Fenton's Blog Author lfenton
A Piece of Mars: The dark splash pattern in this 0.9x0.9 km (0.56x0.56 mi) scene (click on it for a better view) is the site of an impact crater that appeared between images sometime between August 2006 and March 2010 (Smash!). The main crater is ~7 m (23 ft) across. Impacts smash a little ways into the ground, digging a hole and throwing out stuff that was once buried. Here, the buried stuff is darker than what's right at the surface. There are a lot of other similarly sized craters here, but they no longer have dark ejecta surrounding them. What happened to it? A clue comes from the dark and bright wind streaks in the surrounding terrain, with bright trails flowing in the wakes of craters (Whoosh. . .). Previous HiRISE images from 2010 and 2015 show different wind streak patterns, indicating these patterns change on a timescale of... read more ❯

406 stars observed with GPI
Published 1/24/2018 in Gemini Planet Imager Author Franck Marchis
In November 2014 we set out to observe 600 young, nearby stars with the Gemini Planet Imager (GPI) and the Gemini South telescope. Three years later, the survey has achieved a milestone with more than 400 targets observed. Each frame in this movie shows an image from GPI. The star itself is partially blocked by a mask known as a coronagraph. Together with adaptive optics correcting for turbulence in the Earth’s atmosphere, and advanced image processing, we can  see the stellar neighborhood where Jupiter-like exoplanets, brown dwarfs, and circumstellar disks could be present. 406 stars observed with GPI from Franck Marchis on Vimeo. No instrument is perfect, so every star is surrounded by a residual halo of speckles and noise. But other frames show real astronomical sources. In some frames, the round image of another star is present - a binary companion star or a chance alignment of a distant background star. In... read more ❯

Arnus Vallis, Mars
Published 1/22/2018 in Lori Fenton's Blog Author lfenton
A Piece of Mars: This is a section of Arnus Vallis (scene is 1.25x1 km, 0.78x0.62 mi). It's a >300 km long valley that was carved out, not by water, but by lava, long ago. Since then the wind has taken over. The left wall of the valley seems to have layers etched into high relief by wind scour; the floor is covered by ripples (TARs, really). But what I love most about this valley is that along the right (east) side, a long dune extends for much of the valley's length (it's why you don't see layers on the eastern wall). You're looking at a small section of what could be the longest dune on Mars. You can read more about the geology of this valley in this paper. (HiRISE PSP_007187_1920, NASA/JPL/Univ. of Arizona) read more ❯

Varying wind directions
Published 1/18/2018 in Lori Fenton's Blog Author lfenton
A Piece of Mars: This 0.5x0.4 km (0.31x0.25 mi) scene shows two dunes near the north pole. The shape of the dunes indicates two main winds: one blowing left to right (which makes slip faces on the right side, one of which still has some bright white ice on it), and a secondary wind blowing from the lower right to upper left (elongating the upper "corners" of these dunes). The two lee sides are marked by yellow patches, where bright dust falls out of the atmosphere, accumulating in areas of relative calm. But if you look at the boulders (the largest of which is ~4m across, about the size of a subcompact car), you'll see that a third wind blowing from the upper right to lower left has left some bright streaks in the wake of the boulders. This third wind isn't persistent enough to shape the dunes, so it... read more ❯

Dunes with comet tails
Published 1/8/2018 in Lori Fenton's Blog Author lfenton
A Piece of Mars: The north polar dunes in this 575x325 m (0.36x0.2 mi) scene are made of dark sand covered by bright winter frost (which will soon sublimate away, as this image was taken in late spring). To the right of the dunes extend pale yellow bumpy hills, making the dunes look like they have little "comet tails". What's going on here? These dunes are migrating towards the left, so the tails are what they leave behind. The dunes are located very far north, where the ground is always frozen. Ice freezes the lowest parts of the dunes, so that as the upper sections can be pushed downwind, the lower sections remain locked in place behind. This can happen on Earth too, but here it's usually the water table stabilizing the lower portions of the dunes (and many of the thick continental sandstones, like the Navajo sandstone, were built... read more ❯