Experimenting with 3D views

A Piece of Mars: I often use JMARS to visualize Mars data sets, especially images. They’ve recently updated their 3D layer, allowing folks to make lovely vistas by overlaying DTMs with images. I’m new at this, but I’ll experiment and see what I can do to make nice views. Here’s a series of barchan dunes

A change of fluids

A Piece of Mars: Water carved this ~800 m (0.5 mi) wide channel billions of years ago. The water dried up, and since then it’s been sand that flows through here (from the right), building up lovely dunes. A single crater on one of the dunes indicates that they’re not very active (dunes of this

A big rock in a big air stream

A Piece of Mars: Sand pours in from the top of this 1.95×1.95 km (1.21×1.21 mi) scene. The sand piles up and up (here ~115 m or 377 ft high), but ahead (at the bottom) is a mountain poking up. Like water diverting around a rock in a stream, the mountain affects the air flow

More Earth-like views of Mars

A Piece of Mars: In a recent post (Dunes in a Colorful Hole), I showed some dunes crawling over layered terrain, with a view that looked a lot like some desert regions of Earth. Here’s another spot on Mars (0.95×1.1 km, 0.59×0.68 mi) showing yet more beautiful layers with dunes filling up the valleys. Part

Dunes in a colorful hole

A Piece of Mars: Gray dunes have migrated over reddish rock, moving toward a narrowing cleft surrounded by tall tan cliffs. Bright lines on the dunes are exposed internal layers (bones of the dunes, really) that show you where the lee-side slopes once were (so you can tell they’ve moved to the left). The cliffs

Stripes by wind and gravity

A Piece of Mars: This scene (800×450 m or 0.5×0.28 mi) is a steep slope, with high rocky outcrops on the upper right and both gullies and ripples heading downslope to the lower left. The wider, brighter stripes are gullies that were carved by stuff eroding from the outcrops and falling downhill, just like on


A piece of Mars: Ripples form endless chevrons in this 600×450 m (0.37×0.30 mi) scene. It’s really the crest of a dune that connects all the vertices in the chevrons, making that straight line that runs nearly vertical through the center. Wind from the south (bottom) is deflected by this crest and other local topography

Bearded craters and dunes

A piece of Mars: This 600×450 m (1969×1476 ft) scene has a complex sedimentary history. How are bearded craters and dunes formed? They weren’t always bearded. At some point, a deposit of bright material accumulated on this surface, and was then eroded so that all that remains of it is what is protected by topography

Inverted crater

A piece of Mars: This circular hill is 200 m (~656 ft) across and ~48 m (~160 ft) high. It stands alone on a relatively flat plain. Why is it there? The surface here used to be ~48 m higher than it is now – on that old surface, a crater formed. The crater was